If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50=0.8t^2
We move all terms to the left:
50-(0.8t^2)=0
We get rid of parentheses
-0.8t^2+50=0
a = -0.8; b = 0; c = +50;
Δ = b2-4ac
Δ = 02-4·(-0.8)·50
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*-0.8}=\frac{0-4\sqrt{10}}{-1.6} =-\frac{4\sqrt{10}}{-1.6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*-0.8}=\frac{0+4\sqrt{10}}{-1.6} =\frac{4\sqrt{10}}{-1.6} $
| (4x-13)=(3x+7) | | 15+(3x+2)=4x | | 5+10x^2=645 | | 56=x^2+5x+6 | | 2k-8k=-6 | | -2(x-4)^(4/5)=81 | | -2(x-4)^4/5=81 | | a/0.35=5.3 | | 11-2x=31-7x+x | | 7+t=21t=11 | | 5.88*10^-6=x^2/0.07-x | | N/7=3n=21 | | 3t-45=2(3t-45) | | 2(u-6)-8u=6 | | -2=5w+3(w+2) | | -9x+11=-6x-2 | | 5h+11=4h | | A=1s | | Y(n)-2n=4 | | -v+95=161 | | 245-y=172 | | 1(-15w+4)-6=-3(5w-5)-17 | | 6-9(w+7)=-w+2 | | 6-3(-5y-9)=7y+3 | | 3-2(-8u-4)=8u+2 | | 5(6y+4)-22=6(4y+3)-2 | | 6(5x-4)=-7x+5 | | -9x-3x-6=4x+4+6 | | 4(3x+18)=24 | | -2(-x+4)+39=2x+31 | | -2x^2+16x+7=2-2x | | X^2-50=-150-20x |